

Radar remote sensing

Frédéric Frappart frederic.frappart@inrae.fr

Outline

- Introduction
- Radar types
- ***** Radar waves propagation
- Radar cross-section
- ***** Radar range equation

Introduction

What is RADAR?

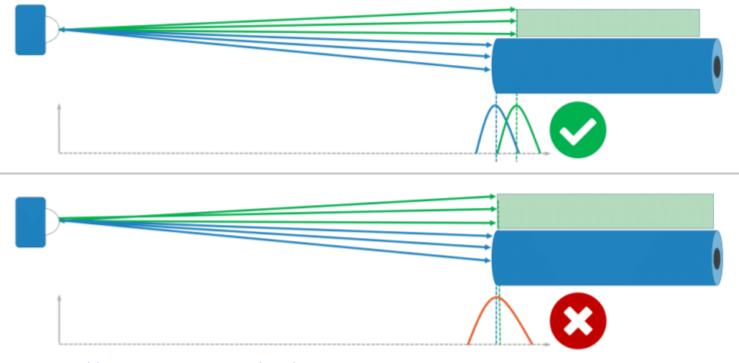
- RADAR : Radio Detection and Ranging
- \blacktriangleright Radio \Rightarrow Electromagnetic radiation (EMR)
- \succ Detection \Rightarrow Targets
- \blacktriangleright And \Rightarrow Simultaneously
- ➢ Ranging ⇒ 4D localization
- Sensors used to warn and measure/monitor
- Important parameters
- Precision, uncertainty, resolution
- > Volume monitored, rate

History

- ✤ 1864: James Clerk Maxwell : EM laws
- ✤ 1889: Heinrich Rudolf Hertz: EMR reflected by metal surfaces
- Early XXth century
- > Invention of radio (Marconi) \Rightarrow development of antennas
- > 1904: Telemboliskop patent \Rightarrow possibility to detect ships in a very dense fog (RAD)
- > 1920s: detection experiments using antennas
- > 1934: Experiments on "radars" ($\lambda = 60 80$ cm). Patent from CSF (France)
- > 1935: Patent from Robert Watson Watt. Birth of the radar. UK instaled first net of radars

History

- ✤ WWII: Radar as we know it (more or less)
- > Development of airborne radars \Rightarrow night fightngs and bombings
- > Experiments on polarization: presence of "noise" due to rain, snow, ...
 - \Rightarrow development of meteorological radars after WWII
 - \Rightarrow techniques of scrambling and counter-measures
- Since then: radar widely used in meteorology, astrometry, ... as well as for monitoring planes and cars
- ◆ **1950s**: Invention of Synthetic Aperture Radar (SAR) \Rightarrow high resolution (HR) radar images
- ★ 1965: Tuckley and Cooley (re)discover the Fast Fourier transform (FFT) \Rightarrow reduces the number of computations from O(N²) to O(N * logN) for N samples signal \Rightarrow allows to work on HR images


Principle

- EM waves are reflected by any significant change in the medium they go through
- Emission of a powerful EM wave transmitted by an antenna
- Signal reflected with a very small amplitude \Rightarrow amplification of the received signals
- Emitted (transmitted) signal:
- Radar emits an EM impulsion and waits for its return
- Radar continuously
- Intensity of the received signal depends on target's :
- Shape
- Nature
- Orientation

https://www.ilmsens.com/short-range-radar/

Principle

https://ondosense.com/en/radar-know-how-optimal-use-of-radarsensors/radar-tutorial-distance-measurement-with-radar-sensors/

Distance(time)-based discrimination Not angular contrary to optics

Radar frequencies

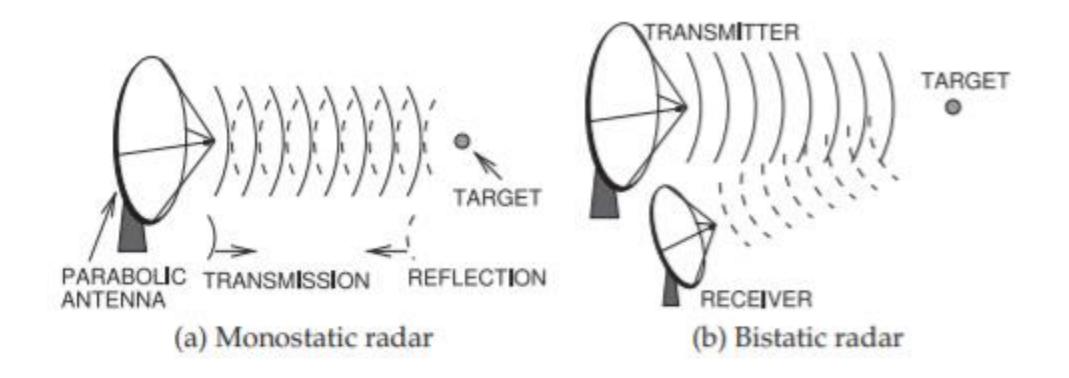
Band	Frequency	Wavelength	Application	
HF	$3-30~\mathrm{MHz}$	$10-100 \mathrm{~m}$	Over-the-horizon radar, oceanographic mapping	IEEE radar bands and applications. https://eng.libretexts.org/Bookshelves/Ele ctrical Engineering/Electronics/Microwav e and RF Design 1 - Radio Systems %28Steer%29/05%3A R F Systems/5.10%3A Radar Systems
VHF	$30-300~\mathrm{MHz}$	$1-10 \mathrm{~m}$	Oceanographic mapping, atmospheric monitoring, long-range search	
UHF	$0.3-1~{ m GHz}$	$1 \mathrm{m} - 30 \mathrm{cm}$	Long-range surveillance, foliage penetration, ground penetration, atmospheric monitoring	
L	$1-2~{ m GHz}$	$15-30~{ m cm}$	Satellite imagery, mapping, long-range surveillance, environmental monitoring	
S	$2-4~{ m GHz}$	$7.5{-}15~{ m cm}$	Weather radar, air traffic control, surveillance, search, IFF (identify, friend or foe)	
С	4–8 GHz	$3.757.5~\mathrm{cm}$	Hydrological radar, topography, fire control, weather	
x	$8{-}12~\mathrm{GHz}$	$2.5{-}3.75~\mathrm{cm}$	Cloud radar, air-to-air missile seeker, maritime, air turbulence, police radar, high-resolution imaging, perimeter surveillance	
Ku	12–18 GHz	$1.72.5~\mathrm{cm}$	Remote sensing, short-range fire control, perimeter surveillance; pronounced "kay-you"	
К	$12 = 8-27 \mathrm{~GHz}$	1.2 – $1.7~\mathrm{cm}$	Police radar, remote sensing, perimeter surveillance	
Ка	$27{-}40~\mathrm{GHz}$	$7.5-12~\mathrm{mm}$	Police radar, weapon guidance, remote sensing, perimeter surveillance, weapon guidance; pronounced "kay-a"	
V	$40-75~\mathrm{GHz}$	$47.5~\mathrm{mm}$	Perimeter surveillance, remote sensing, weapon guidance	
W	$75-110~{ m GHz}$	$2.7-4~\mathrm{mm}$	Perimeter surveillance, remote sensing, weapon guidance	

Radar types

Monostatic, bistatic, multistatic

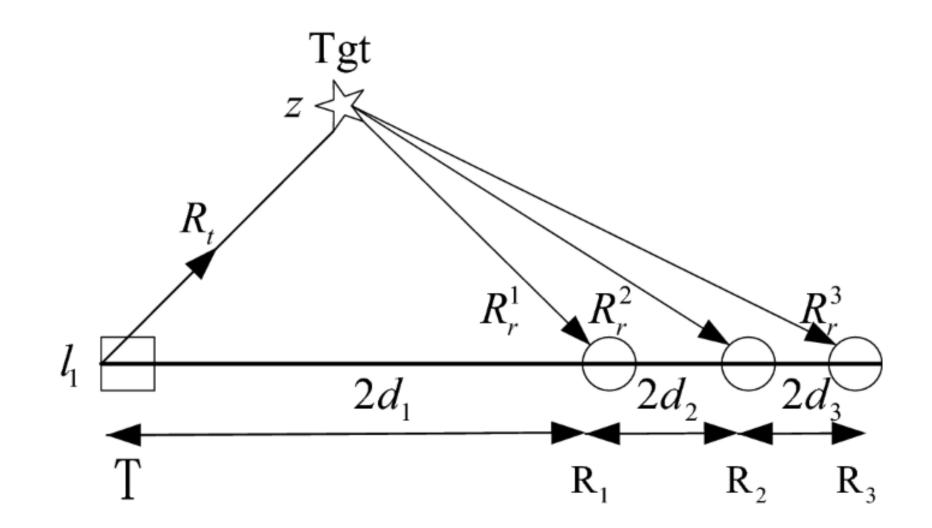
Monostatic radar (most typical)

- ➤ Transmitter and receiver have a common antenna and electronics ⇒ less space requirement and easier synchronization between transmitter and receiver
- > Only the signal backscattered by the target is received by the antenna

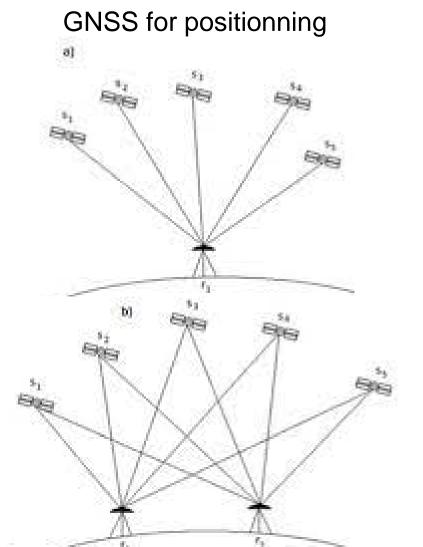

✤ Bistatic radar

- Opportunity to modify the locations of the transmitter and the receiver to optimize the quantity of information on the target
- Good synchronization between transmitter and receiver required

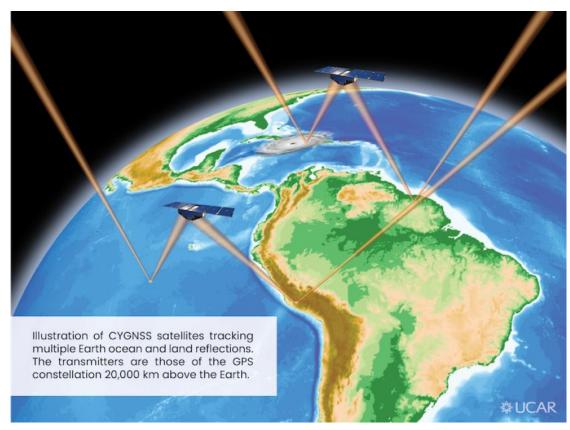
✤ Multistatic radar


One transmitter, several receivers (e.g., GNSS receivers from GPS, GLONASS, Galileo ... constellations)

Monostatic, **bistatic**


https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electronics/Microwave_and_RF_De sign_I - Radio_Systems_%28Steer%29/05%3A_RF_Systems/5.10%3A_Radar_Systems

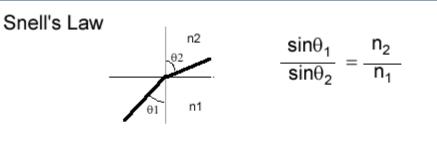
Multistatic

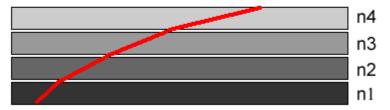


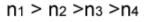
Li et al. (2022). Optimal deployment of multistatic radar for belt barrier coverage, *Wireless Networks, 28*, 2213-2235, doi: 10.1007/s11276-022-02939-5

Multistatic

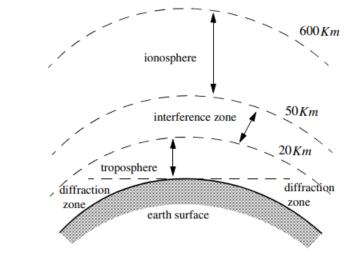
GNSS Reflectometry (GNSS-R)

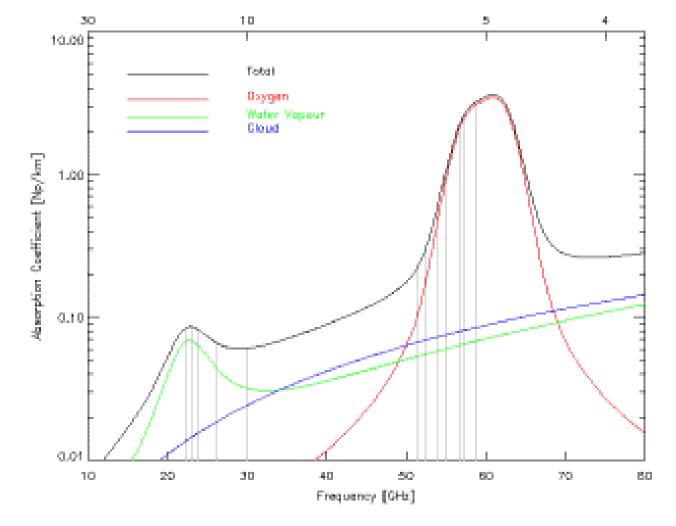

https://www.cosmic.ucar.edu/global-navigation-satellitesystem-gnss-background/gnss-reflectometry


Marques et al. (2022). Shoreline Monitoring by GNSS-PPP Aiming to Attendance the Law 14.258/2010 from Pernambuco State, Brazil, *Bulletin of Geodetic Sciences, 25(2),* e2019012, doi: 10.1590/s1982-21702019000200012


Radar waves propagation

Radar waves propagation

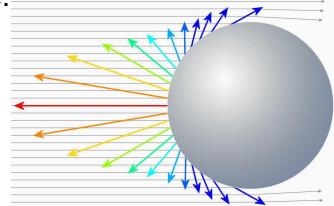

- Atmosphere refraction effect
- Atmospheric refraction index slightly decreases with altitude
- This decrease is related to the diminishing of the atmosphere pressure
- > The atmosphere can be described as a succession of homogenous finite layers characterized by their refraction index (n_i) decreasing as i increases. Snell-Descartes law can be applied: $n_i \sin \theta_i = n_j \sin \theta_j$
- It causes a slight bending of the EM wave trajectory and a delay caused by the interactions with:
 - the electrons present in the ionosphere
 - the "dry" gases of the troposphere (O_2 , N_2 , CO_2 , ...)
 - water vapor and liquid water of the troposhere



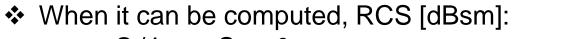
http://dsp-book.narod.ru/RSAD/C1828_PDF_C08.pdf

Radar waves propagation

✤ Atmosphere absorption

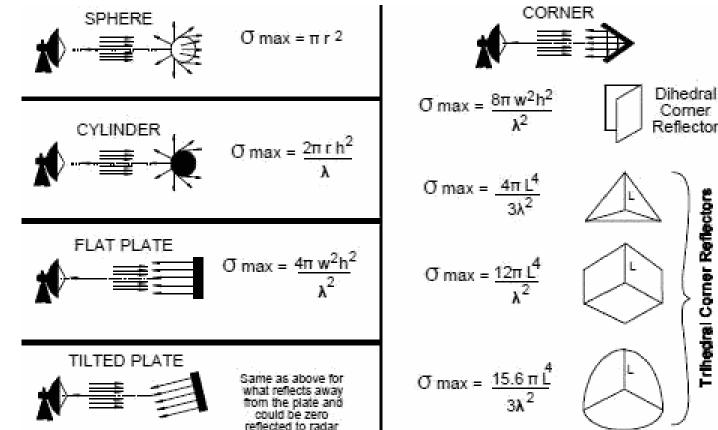

Hewison T.J., Gaffard, C. (2006). 1D-VAR Retrieval of Temperature and Humidity Profiles from Groundbased Microwave Radiometers. *IEEE MicroRad, 2006*, 235–240, doi:10.1109/MICRAD.2006.1677095.

* Radar cross-section (RCS), denoted σ , is a measure of the energy that a radar target intercepts and scatters back toward the radar.


 $\sigma = \text{Projected surface x Reflectivity x Directivity}}$ with Reflectivity : % of the transmitted power reflected by the target
Directivity: ratio between the power backscattered to the radar and the power
backscattered by an isotropic source. The reference is a metallic sphere
with a surface of 1 m²

An object reflects a limited amount of radar energy back to the source. The RCS of a target depends on:

- > the physical geometry and exterior features of the target,
- \succ the direction of the illuminating radar,
- > the radar transmitters frequency,
- \succ the electrical properties of the target's surface.


https://www.radartutorial.eu/01.basics /Radar%20Cross%20Section.en.html

$$\sigma S_t / 4\pi = S_r \times r^2$$

with S_t : power density of the transmitter at the radar target in [W/m²]

- S_r : scattered power density at the receiving site in [W/m²]
- σS_t : power received and re-radiated by the radar target [W]
- $\sigma S_t / 4\pi$: this power per solid angle, i.e. divided by 4π steradian [W/sr]
- r : radius of the sphere [m]

https://www.rfcafe.com/references/electrical/ew-radar-handbook/radar-cross-section.htm

Target Type	RCS, m ²	RCS, dBsm
Insect or bird	10^{-5} to 10^{-2}	-50 to -20
Man	0.5 to 2	-3 to 3
Small aircraft	1 to 10	0 to 10
Large aircraft	10 to 100	10 to 20
Car or truck	100 to 300	20 to 25
Ship	200 to 1,000	23 to 30

http://it.leader-microwave.com/info/basicknowledge-of-radar-scattering-cross-sect-39808128.html

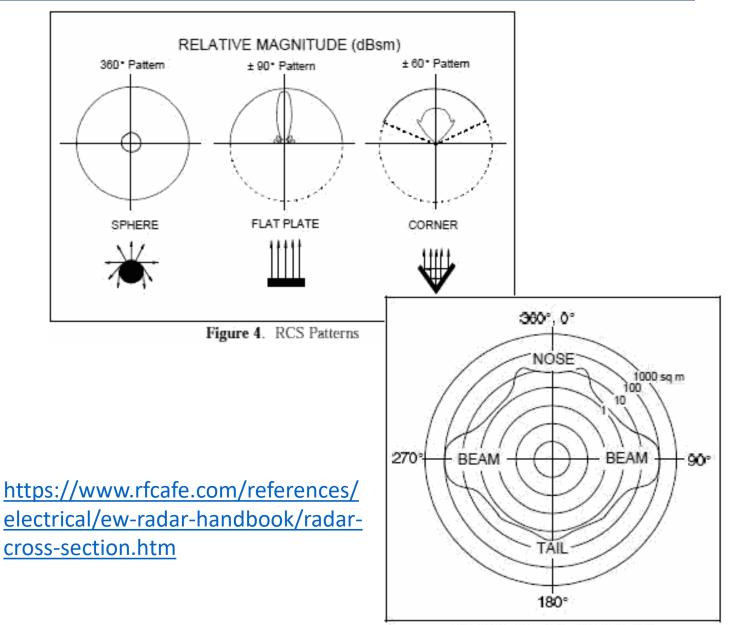
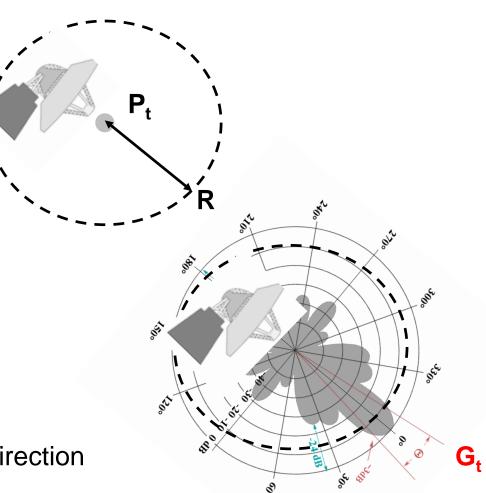
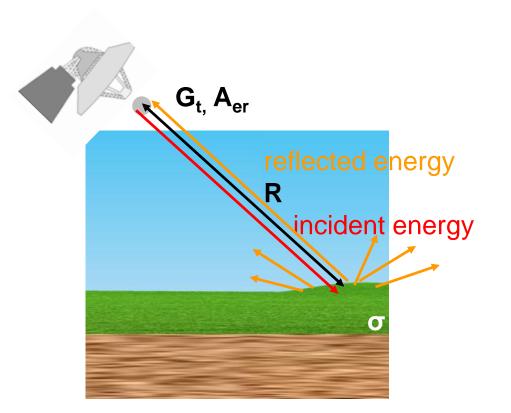


Figure 5. Typical Aircraft RCS


The radar range equation represents the physical dependences of the transmit power, which is the wave propagation up to the receiving of the echo signals.
It is useful to know the range of the target (R) theoretically

Radar

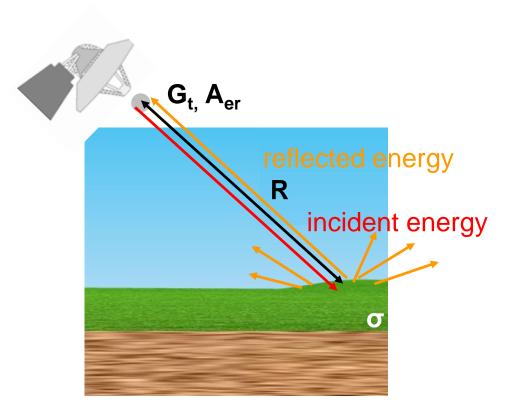
antenna


Derivation of the radar range equation

- Power density from uniformly radiating (istropic) antenna transmitting spherical wave: P_t / (4πR²) with P_t : peak transmitter power
 R : distance from radar
- Power density from directive antenna: P_t G_t / (4πR²) with G_t : transmit gain
- \succ The gain is the radiation intensity of the antenna in a given direction over that of an isotropic (uniformly radiating) source

 $\begin{array}{l} \succ \quad \text{Gain: } \mathbf{G}_t = \mathbf{4} \; \pi \; \mathbf{A}_{er} \; / \; \lambda^2 \\ \qquad \qquad \text{with } A_{er} : \text{ effective area of the radar antenna} \\ \quad \lambda : \text{wavelength} \end{array}$

- > Power of reflected signal at target: $P_t G_t / (4\pi R^2) \times \sigma$ with σ : radar cross-section (RCS)
- > Power density of reflected signal at the radar: $P_t G_t / (4\pi R^2) \ge \sigma / (4\pi R^2)$
- Power of reflected signal from target and received by radar:
 P_t G_t / (4πR²) x σ / (4πR²)



> Power of reflected signal from target and received by radar : $P_r = P_t G_t / (4\pi R^2) \times \sigma A_{er} / (4\pi R^2)$

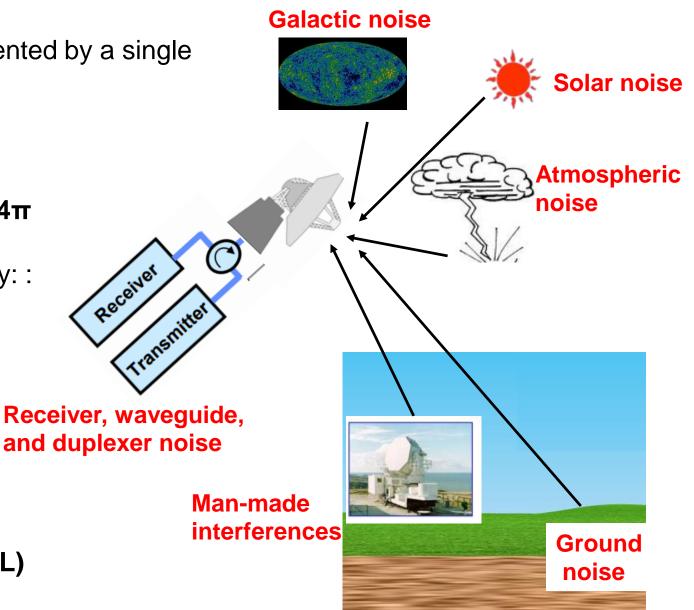
 $P_r = P_t G_t / (4\pi R^2) \times \sigma / (4\pi R^2) \times G_t \lambda^2 / 4\pi$

> Maximum distance of detection: $R_{max} = [(P_t G_t^2 \sigma \lambda^2) / ((4\pi)^3 P_{min})]^{1/4}$

with P_{min} : minimum power that can be detected

Sources of noise received by radars

The total effect of the noise sources is represented by a single noise source at the antenna output terminal:


 $P_r = P_t G_t / (4\pi R^2) \times \sigma A_{er} / (4\pi R^2)$

 $P_r = P_t G_t / (4\pi R^2) \times \sigma / (4\pi R^2) \times G_t \lambda^2 / 4\pi$

The noise power (N) at the receiver is given by: :
 N = k_B B_n T_s

```
with k_B = 1.38 \times 10^{-23} \text{ J/K}
Boltzman's constant
B_n: noise bandwidth of receiver
T_s: system noise temperature
```

* Signal to Noise Ratio: S / N = Pr / N S / N = (P_t G_t² σ λ²) / ((4π)³ R⁴ k_B B_n T_s L) with L: total system losses

